Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jarrod J. M. Amoore and Cameron J. Kepert*

School of Chemistry, F11, University of Sydney, NSW 2006, Australia

Correspondence e-mail:
c.kepert@chem.usyd.edu.au

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.032$
$w R$ factor $=0.086$
Data-to-parameter ratio $=17.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,4,6-Tris(4-pyridylmethylsulfanyl)-1,3,5-triazine monohydrate

In the crystal structure of the title compound, $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{~S}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, the ligands are held together through $\pi-\pi$ stacking interactions and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds involving the water molecule.

Comment

The ligand 2,4,6-tris(4-pyridylmethylsulfanyl)-1,3,5-triazine (4-TPST) has been used previously in the formation of supramolecular structures containing silver and nickel (Hong et al., 2000a). However, the ligand has not previously been crystallized without metal ions in the structure. The asymmetric unit of the title compound, (I), contains one 4-TPST molecule and one water molecule (Fig. 1). The 4 -TPST molecule is arranged with two of the pyridine rings bent above the plane of the central triazine ring and the other bent down below the plane. The three $\mathrm{C}_{\text {triazine }}-\mathrm{S}-\mathrm{C}_{\text {ethyl }}$ angles [102.09 (7)-103.35 (7) ${ }^{\circ}$] are all arranged in the same direction around the central triazine ring, as seen in one of the literature examples (Hong et al., 2000b) but not in the other (Hong et al., $2000 a$). The central triazine rings are involved in weak $\pi-\pi$ interactions, the centroid-centroid distance being 3.9981 (5) \AA, in the direction of the a axis (Janiak, 2000). There are shorter $\pi-\pi$ interactions, the centroid-centroid distance being 3.5617 (4) A between the pyridine rings of the 4-TPST ligands, linking the ligands together in the [101] direction. There are also numerous hydrogen-bonding interactions between each water molecule and the three surrounding ligand molecules (Desiraju, 2002).

Received 9 May 2005 Accepted 20 May 2005 Online 28 May 2005
(I)

Experimental

The ligand 2,4,6-tris(4-pyridylmethylsulfanyl-1,3,5-triazine was prepared via literature methods (Hong et al., 2000b). Single crystals suitable for X-ray analysis were grown by slow evaporation in air of a 1:1 solution of nitromethane and chloroform.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{~S}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=468.61$
Triclinic, $P \overline{1} \overline{1}$
$a=8.4360(10) \AA$
$b=10.8759(12) \AA$
$c=12.1904(14) \AA$
$\alpha=73.9052(18)^{\circ}$
$\beta=85.945(19)^{\circ}$
$\gamma=81.3899(19)^{\circ}$
$V=1062.0(4) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.465 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 5238
reflections
$\theta=2.3-28.0^{\circ}$
$\mu=0.38 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Needle, light yellow
$0.55 \times 0.11 \times 0.09 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.89, T_{\text {max }}=0.97$
10553 measured reflections

View of the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.

Data collection: SMART (Bruker, 1997); cell refinement: SAINTPlus (Bruker, 1997); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: XCIF (Bruker, 2001).

We thank the Australian Research Council for funding.

References

Bruker (1997). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hong, M., Zhao, Y., Su, W., Cao, R., Fujita, M., Zhou, Z. \& Chan, A. S. C. (2000a). Angew. Chem. Int. Ed. 39, 2468-2470.
Hong, M., Zhao, Y., Su, W., Cao, R., Fujita, M., Zhou, Z. \& Chan, A. S. C. (2000b). J. Am. Chem. Soc. 122, 4819-4820.
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

